

	Form Number	EXC-01-02-02A
Form:	Issue Number and Date	2/3/24/2022/2963
		05/12/2022
	Number and Date of Revision or Modification	
Course Synabus	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	07

1.	Course Title	Mathematical analysis 1					
2.	Course Number	0301311					
2	Credit Hours (Theory, Practical)	3+0					
5.	Contact Hours (Theory, Practical)	3					
4.	Prerequisites/ Corequisites	0331212					
5.	Program Title	B.Sc.					
6.	Program Code						
7.	School/ Center	Science					
8.	Department	Mathematics					
9.	Course Level	Bsc					
10.	Year of Study and Semester (s)	Second or third / all semesters					
11.	Other Department(s) Involved in						
	Teaching the Course						
12.	Main Learning Language	English					
13.	Learning Types	■Face to face learning □Blended □Fully online					
14.	Online Platforms(s)	□Moodle ■Microsoft Teams					
15.	Issuing Date	22-10-2024					
16.	Revision Date	22-10-2024					

17. Course Coordinator:

Name: Khalid Bdarneh	Contact hours:(S,T,W) 10:30-11:30
Office number: 33	1 Phone number:(N/A)
Email: K.Bdarneh@ju.edu.	0

18. Other Instructors:

Name:	
Office number:	
Phone number:	
Email:	
Contact hours:	
Name:	
Office number:	
Phone number:	
Email:	
Contact hours:	

19. Course Description:

Functions of bounded variation on [a,b]. Continuous functions of bounded variation. Riemann integral, the definition. Existence of Riemann integral. Basic properties of Riemann integral. Classes of Riemann integrable functions (step functions, continuous functions, monotone functions). Mean value theorems for Riemann integral. Fundamental theorem of calculus. The Riemann-Stieltjes integral, the definition. Basic properties of R-S integral. Integration by parts. Continuous functions and the R-S integral. Monotone functions and the R-S integral. Mean value theorems for R-S integral. The fundamental theorem for R-S integral. Linear transformations on Rⁿ and their matrix representation(fast revision). Functions from Rⁿ to Rm (basic setup and examples). The derivative of vector valued functions of several variables, The definition. directional derivatives. Differentiability implies continuity. Partial derivatives. Matrix representation of the derivative. The gradiant and its properties. The chain rule. The mean value theorem. Higher order derivatives (the second). Inverse and implicit mapping theorems (statements). Taylor series in two variables.

20. Program Student Outcomes (SO's):

(To be used in designing the matrix linking the intended learning outcomes of the course with the intended

learning outcomes of the program)

7. Utilize research methods, critical and creative thinking skills to assess and analyze

information) to solve problems properly, then draw valid reasoning and logical

conclusions leading to true consequences.

21. Course Intended Learning Outcomes (CLO's):

(Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

- 1. Understand the main concepts in real analysis. Write and read proofs in mathematical analysis.
- 2. Write and read proofs in mathematical analysis.
- 3. Produce rigorous proofs of results that arise in the context of real analysis.
- 4. Comprehend the main theorems in real analysis.
- 5. Make mathematical thinking and reasoning, and ask/answer relevant questions.

Course	The learning levels to be achieved									
CLOs	Remembering	Understanding	Applying	Analysing	evaluating	Creating				
1										
2										
3										
4										
5										

22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes

of the program:

Program SO's Course CLO's	SO (1)	SO (2)	SO (3)	SO (4)	SO (5)	SO (6)	SO (7)	SO (8)
CLO (1)								
CLO (2)								
CLO (3)								
CLO (4)								
CLO (5)								

23. Topic Outline and Schedule:

Week	Lecture	Topic	CLO/s Linked to the Topic	Learning Types Face to Face (FF) Blended (BL) Fully Online (FO)	Platform Used	Synchronous (S) Asynchronous (A)	Evaluation Methods	Learning Resources
	1.1	Functions of bounded variation on [a, b].	1	FF	Teams	S		Text Book
1	1.2	Total variation of a function on [a, b].	1	FF	Teams	S		Text Book
	1.3	Total variation of a function on [a, b].	1	FF	Teams	S		Text Book
	2.1	Total variation of a function on [a, b].	1	FF	Teams	S		Text Book
2	2.2	Total variation of a function on [a, b].	1	FF	Teams	S		Text Book
	2.3	Continuous functions of bounded variation.	1,2	FF	Teams	S		Text Book
	3.1	The Riemannstieltjes integral, the definition.	1,2	FF	Teams	S		Text Book
3	3.2	The Riemannstieltjes integral, the definition.	1,2	FF	Teams	S		Text Book
	3.3	Basic properties of R-S integral.	1,2	FF	Teams	S		Text Book
	4.1	Integration by parts	1,2	FF	Teams	S		Text Book
4	4.2	Integration by parts	1,2	FF	Teams	S		Text Book
	4.3	Continuous functions and the RS integral.	1,2	FF	Teams	S		Text Book
	5.1	Continuous functions and the RS integral.	3	FF	Teams	S		Text Book
5	5.2	Continuous functions and the RS integral.	3	FF	Teams	S		Text Book
	5.3	Continuous functions and the RS integral.	3	FF	Teams	S		Text Book

الجامعة الاردنية

							— •
	6.1	Monotone functions	3	FF	Teams	S	Text
		and the RS integral.					BOOK
6	6.2	Mean value theorems	3	FF	Teams	S	lext
		for R-S integral.					BOOK
	6.3	for B.S. integral	3	FF	Teams	S	Text
		The fundament of					BOOK
	7 1	the runuament a	2	CC	Tooms	c	Text
	7.1	integral	5	ГГ	Teams	3	Book
		The fundament al					
7	7.2	theorem for R-S	3	FF	Teams	ç	Text
,	1.2	integral	5		Teams	5	Book
		The fundament al					
	73	theorem for R-S	3	FF	Teams	s	Text
	7.5	integral	5		reams	5	Book
		Linear transformations					
		on Rn and their matrix					Text
	8.1	representat ion (quick	3	FF	Teams	S	Book
		revision).					
		Functions from Rn to					
8		Rm (Vector fields)		FF	Teams	S	Text
	8.2	basic setup and	3				Book
		examples).					
	0.2	Midtorm Evam	1 2 2	CC	Tooms	c	Text
	0.5	WILLET IT EXAM	1,2,5	ГГ	Teams	3	Book
	Q 1	The derivative of a	Λ	FF	Teams	ç	Text
	9.1	vector field.	4		Teams	,	Book
٩	92	The derivative of a	Λ	FF	Teams	ç	Text
5	5.2	vector field.	-		Teams	5	Book
	9.3	The derivative of a	4	FF	Teams	S	Text
	5.0	vector field.	•		- Curris		Book
	10.1	Differentiab ility of	4	FF	Teams	S	Text
		vector forces.					Book
	10.2	Matrix representation	4	FF	Teams	S	Text
10		of the derivative					Book
	10.3	Matrix representation	4	FF	Teams	S	Text
		of the derivative					Book
	11 4	Ine gradiant and its	Α		Teerre	c	Text
	11.1	11.1 relation to derivative 4	4	FF	Teams	S	Book
11		of vector forces.					Tout
11	11.2	The chain rule.	4	FF	Teams	S	lext
							BOOK
	11.3	Second exam	4	FF	Teams	S	lext
							воок

الجامعة الاردنية

	12 1	The mean value	Д	FF	Teams	S		Text
	12.1	theorem.			Teams	5		Book
12	12.2	Higher order erivatives	Δ	FF	Toome	S		Text
12	12.2	(the second).			Teams			Book
	12.2	Higher order erivatives	15	55	Teams	c		Text
	12.5	(the second).	4, 5		Teams	5		Book
	12.1	The inverse function	4 5	FF	Teams	ç		Text
	13.1	theorem.	4, 5	FF	Teams	5		Book
12	12.2	The inverse function	4 5		Тариа	c		Text
15	13.2	theorem.	4, 5	FF	Teams	3		Book
	12.2	The inverse function	4 5		Taamaa	c		Text
	13.3	theorem.	4, 5	FF	Teams	2		Book
	1.1.1	The implicit function	4, 5	FF	Teams	S		Text
	14.1	mapping theorem.						Book
14	14.2	The implicit function	4 5	FF	Teams	S		Text
14	14.2	mapping theorem.	4,5					Book
	14.2	The implicit function	4 5	CC	Tooms	ç		Text
	14.5	mapping theorem.	4,5	FF	Teams	5		Book
	15 1	Course revision	1 2 2 4 5	CC	Tooms	ç		Text
	15.1	Course revision.	1,2,3,4,5	ГГ	Teams	3		Book
15	15.2	Course revision	1 2 2 4 5	CC	Tooms	ç		Text
15	15.2	Course revision.	1,2,3,4,5	ГГ	Teams	5		Book
	15.2	Course revision	1,2,3,4,5	r r	Teams	c		Text
	15.5			FF	reams	3		Book
16			1,2,3,4,5				Final	
10							Exam	

24. Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	CLO/s Linked to the Evaluation activity	Period (Week)	Platform
Midterm exam	30		1,2,3	8	On Campus
Second exam	20		4	11	On Campus
Final	50		1,2,3,4,5	Final exams period	On Campus

25. Course Requirements:

(e.g.: students should have a computer, internet connection, webcam, account on a specific

software/platform...etc.): - Data show, Microsoft Teams account.

26. Course Policies:

According to university regulations, attendance is mandatory. If a student is unable to attend a class, then he/she should contact the instructor. If a student misses more than 10% of the classes without excuse, then he/she will be assigned a falling grade in class. In cases of extreme emergency or serious illness, the student will be allowed to make up the missed exams. Times and dates for makeup exams will be assigned later. There are severe sanctions for cheating, plagiarizing and any other form of dishonesty. The university regulations on cheating will be applied to any student who cheats in exams or on any homework.

- **A.** Attendance policies:
- B. Absences from exams and submitting assignments on time:
- **C.** Health and safety procedures:
- **D.** Honesty policy regarding cheating, plagiarism, misbehavior:
- E. Grading policy:
- F. Available university services that support achievement in the course:

27. References:

A- Required book(s), assigned reading and audio-visuals:

Mathematical Analysis, Apostol, T.M.

B- Recommended books, materials, and media:

28. Additional information:

	-	
Name of the Instructor or the Course Coordinator:	Signature:	Date:
Khalid Bdarneh		22-10-2024
Name of the Head of Quality Assurance Committee/ Department:	Signature:	Date:
Prof. Manal Ghanem		
Name of the Head of Department:	Signature:	Date:
Prof. Baha Alzalg.	••••	
Name of the Head of Quality Assurance Committee/ School of Science:	Signature:	Date:
Prof. Emad A. Abuosba		
Name of the Dean or the Director:	Signature:	Date:
Prof. Mahmoud I. Jaghoub	••••	